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1 Introduction

Catastrophic forgetting hinders sequential and con-
tinual learning, and can make training slower and less
efficient. Even linear models are susceptible to catas-
trophic forgetting.
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» Globally shared parameters make models
susceptible to catastrophic forgetting.

» Piece-wise defined functions do not share
parameters over all inputs.

= Cubic B-splines are robust to forgetting.
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= Uniform splines have the same shape, and
are implemented with an activation function
by scaling and translating inputs correctly.
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= Only four basis functions are non-zero,
regardless of the number of basis functions.
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= If two inputs are far enough from each other,
then they do not interfere with each other.

2 Single-Variable Functions

Create more powerful function approximators with a
larger density of basis functions that are doubled.
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= Create minimal model.
= Train model to convergence.

= Increase model size and train again.
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3 Universal Function Approximation

Named for carrying the weight of all it must remem-
ber, ATLAS is a function approximator of n variables,
with mixed-density B-spline functions f;(x;), g ;(x;),
and h; j(x;) in the form:
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4 Distal Orthogonality

If two vector inputs differ from each other in each
input variable, then the gradient updates are orthog-
onal. For any X,y € D(A) C R" and ATLAS model
A(X) bounded trainable parameters 0;, there exists a
0 > 0 such that:

X —y;l > 0Vj e N = (VA(X), V;A®Y)) =0

5 Gradient Flow Attenuation

For any X € D(A) C R" and bounded trainable pa-
rameters ©: if all the mixed-density B-spline func-
tions are bounded, then the gradient vector of train-
able parameters for ATLAS is bounded:
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6 Technical Overview

We created an efficient implementation of ATLAS
with convolutional layers and embedding layers to
look up parameters. Very few redundant computa-
tions are made. Only non-zero basis functions are
evaluated. The condensed computational graph of
ATLAS using 1D convolution, embedding, multiply,
and activation layers:

Computational time complexity: O(Mnlog ), and
space complexity: O(Mn\). At most 2\ basis func-
tions for each single-variable function.

7 Results
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» Theoretical advances in function approxima-
tion and mitigating catastrophic forgetting.

Function Value

» Technical success in developing efficient
TensorFlow implementations of ATLAS.

Empirical evidence of memory retention and ro-
bustness to catastrophic forgetting.

Download the paper —




