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Introduction

We explore and propose an automated method for brain vessel
segmentation to alleviate the following identified problems:

• Difficulty and delay in manual vessel segmentation due low
contrast images from medical imaging processes.

• Health Hazards of contrast enhancing dyes

• Cost involved in manual brain vessel segmentation

A transfer learning approach is adapted to perform vessel seg-
mentation of the human brain [1].

Convolutional Neural Networks (CNN)

CNNs are the main deep learning structures used in image pro-
cessing and the main architectures used in this task. They consist
of several layers for different purposes illustrated below.

Fig. 1: CNN Architecture [2]

Mathematically, the continuous convolution of two functions in 1
dimension is expressed by;

f (t) ∗ g(t) =
∫ t

0
f (τ )g(t− τ )dτ. (1)

Convolutions have several properties including:

• Commutativity
f ∗ g = g ∗ f ; (2)

• Associativity
f ∗ (g ∗ h) = (f ∗ g) ∗ h; (3)

• Distributivity

f ∗ (g + h) = (f ∗ g) + (f ∗ h). (4)

A special type of CNN, the Fully Convolutional Network(FCN) is
mostly used in segmentation tasks. A common filter applied for
this task is the edge detection filter illustrated below.

Fig. 2: Convolution on Circle of Wilis

BackBone Model Architecture

Fig. 3: Vessap Architecture [3].

Transfer Learning

We perform transfer learning as a method to solve the unavailability of
manually annotated images. This approach allows us to start with learned
features before adjusting these features to suit the specific segmentation
task we want to carry out instead of starting the process all over from
scratch.

Fig. 4: Illustration of transfer learning [4].

Our approach mainly involved hyper-parameter tuning to enable the deep
learning architecture to work on our task of human brain segmentation

Fig. 5: Illustration of pre-trained model

Vessap Model Vs Fine-tuned Model
Data Volumes of Mouse Brain Volumes of Human Brain
Input Images stained with dye Low contrast MRA im-

ages concatenated
Execution time 5 minutes execution time 4 minutes execution time
Crosshair filters False True
Normalize Data Max Max
Input Channel 2 1
Batch size 10 12
learning rate 0.01 1
Cube size 64 32
Threshold 0.5 0.6
Optimizer Adam SGD

The class balancing loss function with stable weights is implemented to
account for general class imbalances.
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Evaluation

Evaluation metrics of the different segmentation approaches for 75 vol-
umes of 100 × 100 × 50 pixels (s:seconds).

Fig. 6: Vessap Results [5].

Qualitative Results

VesSAP enables reliable segmentation and feature extraction
(bifurcation points, radius and centerlines) down to the capillary-
level from the imaging data. We provide results of the segmen-
tation of the Vessap Model as well as results of our pre-trained
model.

Fig. 7: Original and Segmented Slices of Vessap Segmentation

Fig. 8: Original and Segmented Slices of ABDIV Data

Fig. 9: Original and Segmented Slices of MRA Data

Fig. 10: Original and Segmented Slices of IXE Data

Metrics and Features Extracted
Features/Metric MRA Data IXE Data
Loss 7.9870e-07 6.9870e-07
Metric 0.9 0.8
Centerlines True True
Max Radius 18.98 17.42
Min Radius 3.82 2.96
Skeleton Length 63934 43934
Bifurcations 9725 8742

Code and Implemenatation

The entire experiment was run using the Code-Ocean public
Capsule. To perform segmentation and generate results, we
make a copy of the Vessap public capsule and train our model.
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